Set covering and packing formulations of graph coloring: Algorithms and first polyhedral results
نویسندگان
چکیده
منابع مشابه
Set covering and packing formulations of graph coloring: Algorithms and first polyhedral results
We consider two (0,1)-linear programming formulations of the graph (vertex-) coloring problem, in which variables are associated to stable sets of the input graph. The first one is a set covering formulation, where the set of vertices has to be covered by a minimum number of stable sets. The second is a set packing formulation, in which constraints express that two stable sets cannot have a com...
متن کاملdynamic coloring of graph
در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...
15 صفحه اولSet Covering, Packing and Partitioning Problems
where A is a mxn matrix of zeroes and ones, e = (1,...,1) is a vector of m ones and c is a vector of n (arbitrary) rational components. This pure 0-1 linear programming problem is called the set covering problem. When the inequalities are replaced by equations the problem is called the set partitioning problem, and when all of the ≥ constraints are replaced by ≤ constraints, the problem is call...
متن کاملClique, independent set, and graph coloring
This article introduces the closely related maximum clique, maximum independent set, graph coloring, and minimum clique partitioning problems. The survey includes some of the most important results concerning these problems, including their computational complexity, known bounds, mathematical programming formulations, and exact and heuristic algorithms to solve them.
متن کاملEfficient Graph Packing via Game Coloring
The game coloring number gcol(G) of a graph G is the least k such that if two players take turns choosing the vertices of a graph then either of them can insure that every vertex has less than k neighbors chosen before it, regardless of what choices the other player makes. Clearly gcol(G) ≤ ∆(G) + 1. Sauer and Spencer [20] proved that if two graphs G1 and G2 on n vertices satisfy 2∆(G1)∆(G2) < ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Optimization
سال: 2009
ISSN: 1572-5286
DOI: 10.1016/j.disopt.2008.10.004